Development of GLAST(+) astrocytes and NG2(+) glia in rat hippocampus CA1: mature astrocytes are electrophysiologically passive.
نویسندگان
چکیده
Glia show marked heterogeneity in terms of electrophysiology in the developing brain, and two major types can be identified based on GFAP or NG2 expression. However, it remains to be determined if such an electrophysiological diversity holds for the adult brain and how GFAP and NG2 lineage glia are associated with different electrophysiological phenotypes during the course of development. To address these fundamental questions, we performed in situ whole cell recording from morphologically identified glia from the rat hippocampal CA1 region from postnatal (P) days 1-106 and double-stained postrecorded cells with GLAST and NG2 antibodies. We found glia express mostly voltage-gated outward K(+) currents and also have inward Na(+) currents in the newborn (P1-P3), but these are no longer present after P22. They consist equally of GLAST(+) and NG2(+) cells in the newborn, but are mainly NG2(+) in juvenile animals (P4-P21). Glia showing voltage-gated outward and inward K(+) currents are also present at P1, peak at P5 and decline to a stationary level of approximately 10% in the adult. They are GLAST(+) astrocytes from newborn to juvenile but NG2(+) glia in the adult. Electrophysiologically passive glia first appear at P4 and increase to 91% in adults, of which 85% are GLAST(+). These results indicate that glial electrophysiological diversity occurs predominantly in the developing brain. While most glia in the NG2 lineage preserve a certain amount of voltage-gated ion conductances, mature GLAST(+) astrocytes are electrophysiologically passive.
منابع مشابه
Heterogeneity of Kir4.1 channel expression in glia revealed by mouse transgenesis.
The weakly inwardly rectifying K(+) channel Kir4.1 is found in many glial cells including astrocytes. However, questions remain regarding the relative contribution of Kir4.1 to the resting K(+) conductance of mature astrocytes in situ. We employed a bacterial artificial chromosome transgenic approach in mice to visualize Kir4.1 expression in vivo. These mice (Kir4.1-EGFP) express enhanced green...
متن کاملFunctional specialization and topographic segregation of hippocampal astrocytes.
Astrocytes have been suggested to play several roles in the complex control of brain microenvironment. However, they have been generally considered to constitute a homogeneous population of cells. Here we show that at least three electrophysiologically distinct types of astrocytes can be found in the mature hippocampus. These subpopulations of glia were characterized by expression of different ...
متن کاملDevelopment of gap junctions in hippocampal astrocytes: evidence that whole cell electrophysiological phenotype is an intrinsic property of the individual cell.
Gap junction communication between astrocytes is prevalent and has been proposed to be involved in several astrocyte functions. One such proposal involves gap junctions in potassium spatial buffering. However, little is known about the developmental time course of gap junction coupling and how much the syncytium affects whole cell measurements of ion currents. Our previous work described three ...
متن کاملMorphological and physiological interactions of NG2-glia with astrocytes and neurons.
Models of central nervous system (CNS) function have historically been based on neurons and their synaptic contacts - the neuronal doctrine. This doctrine envisages glia as passive supportive cells. However, electrophysiological and imaging studies in brain slices show us that astrocytes, the most numerous cells in the brain, express a wide range of neurotransmitter receptors that are activated...
متن کاملThe Role of Wnt Signaling Pathway on the Expression of TGFβ 1 and TGFβ 2 in Cultured Rat Cortical Astrocytes
Introduction: Astrocytes, the most abundant glia in the central nervous system, modulate neuronal survival and function. Astrocytic functions are mediated by synthesis and secretion of wide ranges of polypeptides through mechanism (s) poorly understood. Among these, TGFβs are synthesized and released by the astrocytes. In this study, the involvement of Wnt signaling pathway on the synthesi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 95 1 شماره
صفحات -
تاریخ انتشار 2006